Sketch the curve represented by the parametric equations

$$x = t^2 + t$$

$$y = -\cos \pi t$$
 for $-2 \le t \le 1$

SCORE: /4 PTS

by plotting at least 4 points. Indicate the orientation (direction) of the curve.

Find the value of $\sum_{n=0}^{5} [4n^2 - (n!)].$

$$[4(2)^{2}-2!] + [4(3)^{2}-3!] + [4(4)^{2}-4!] + [4(5)^{2}-5!]$$

$$= (16-2) + (36-6) + (64-24) + (100-120)$$

$$= (4(2)^{2}-2!] + (36-6) + (64-24) + (100-120)$$

$$= (4(2)^{2}-2!] + (36-6) + (64-24) + (100-120)$$

$$= (4(2)^{2}-2!] + (36-6) + (64-24) + (100-120)$$

$$= (4(2)^{2}-2!] + (4(3)^{2}-3!] + (4(4)^{2}-4!] + (4(5)^{2}-5!]$$

The parametric equations $x = t^2$ $x = t^2$ and $y = 2 - t^2$ and $y = 2 - e^t$ both correspond to the rectangular equation y = 2 - x. SCORE: _____/3 PTS

Explain how the parametric curves differ from each other. Be as specific as possible.

X GOBS FROM OD TO O TO OO

X GOES FROM &O TO 00

SCORE: ____/3 PTS

Simplify $\frac{(n-4)!}{(n-2)!}$

3(n-4)(n-5)(n-6)...(1

EITHER ONE IS OK

Find parametric equations for the ellipse that has center (4, -8), and is 12 units wide (side-to-side) and 14 units tall (top-to-bottom).

SCORE: ____ / 2 PTS

Eliminate the parameter and write the rectangular equation for the curve represented by the parametric

$$y = \frac{t}{2t - 1}$$

$$\times (1+t)=t$$
 $\times + \times t=t$
 $\times = t-xt$
 $\times = tU-x$
 $t=\frac{x}{1-x}$

Write
$$\frac{8}{8} - \frac{16}{27} + \frac{32}{64} - \frac{64}{125} + \frac{128}{216} - \frac{256}{343}$$
 using sigma notation.

$$\sum_{n=2}^{7} (-1)^n \frac{2^{n+1}}{n^3}$$

(T) POINT FOR USING SAME INDEX UNDER Z AS IN FORMULA

Find parametric equations for the line through the points (6, -11) and (-1, -7).

SCORE: /2 PTS

$$x = b + (-1-6)t = b-7t$$
 Oor $x = -1 + (b-1)t = -1+7t$ $y = -11 + (-7-1)t = -1+4t$ O $y = -7+(-1)-7)t = -7-4t$

$$y = -7 + (-1) = -1 + 7 = -7 - 4 = -7$$

Find the 4th term of the sequence defined recursively by $a_1 = -2$, $a_n = n^2 - 2a_{n-1}$ for $n \ge 2$.

SCORE: ____/3 PTS

$$a_2 = 2^2 - 2a_1 = 4 - 2(-2) = 8$$
, (1)
 $a_3 = 3^2 - 2a_2 = 9 - 2(8) = -7$, (1)
 $a_4 = 4^2 - 2a_3 = 16 - 2(-7) = 30$, (1)